Chap 6 Linear Circuits with Operational Amplifier

6.1 Fundamental concepts of filters

First-order low pass-filter implemented by an RC cirduit:

• Assume the voltage source is

(6.1-1)
$$
v_s(t) = V_s \cos(\omega t)
$$
 or $\hat{v}_s(s) = V_s \frac{s}{s^2 + \omega^2}$.

Then, the output voltage is

(6.1-2)
$$
\hat{v}_o(s) = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} \hat{v}_s(s) = \frac{1}{\frac{1 + sRC}{H(s)}} \cdot \hat{v}_s(s) = H(s) \frac{V_s}{s^2 + \omega^2}
$$

• As $t \to \infty$, let $s = j\omega$ and obtain $H(j\omega) = \frac{1}{1+j\omega}$ $H(j\omega) = -\frac{1}{l}$ ω ^{*j*} = $\frac{}{1 + j\omega RC}$ ω $=\frac{1}{1+i\omega RC}$, or expressed as

$$
(6.1-3) \tH(j\omega) = |H(j\omega)|e^{j\angle H(j\omega)} = \frac{1}{\sqrt{1 + (\omega RC)}^2}e^{j\theta}
$$

where $H(j\omega)$ $\big($ $\mathit{oRC} \big)^{\! 2}$ 1 1 *H j RC* ω ω $=\frac{1}{\sqrt{1+1}}$ and $\theta = \angle H(j\omega) = -\tan^{-1}(\omega RC)$ $\theta = \angle H(j\omega) = -\tan^{-1}(\omega RC).$

• If $v_s(t) = V_s \cos(\omega t)$ then the output voltage is

(6.1-4)
$$
v_o(t) = |H(j\omega)|V_s \cos(\omega t + \theta) = V_0 \cos(\omega t + \theta)
$$

where $V_0 = |H(j\omega)|V_s$.

$$
v_s(t) = V_s \cos(\omega t) \qquad H(s) \qquad v_o(t) = |H(j\omega)|V_s \cos(\omega t + \theta)
$$

• It is easy to check that
$$
|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}} < 1
$$
, i.e., $V_0 < V_s$ and
(6.1-5) $|H(j\omega)| = \begin{cases} 1 & \omega \to 0 \\ 1/\sqrt{2} & \omega = \omega_0 = 1/RC \\ 0^+ & \omega \to \infty \end{cases}$

The output voltage will be decresed while ω is incresed.

 To achieve the output voltage, we often connect a receiver with equivalent resistance R_o , shown as below:

Then, the output voltage is changed as $\hat{v}_o(s) = H_{R_o}(s)\hat{v}_s(s)$ $\hat{v}_s(s)$ or

(6.1-6)
$$
\hat{v}_o(s) = \frac{\frac{1}{sC} / R_o}{R + \frac{1}{sC} / R_o} \hat{v}_s(s) = \frac{r}{\frac{r(sRC) + 1}{H_{\hat{v}_o}(s)}} \cdot \frac{V_s}{s^2 + \omega^2}
$$

where $r = \frac{R_0}{r}$ *o* $r = \frac{R_o}{R+R}$ <1.

• It is easy to check that $H_{R_0}(j\omega)$ $^{2}\big(\mathit{oRC}\big)^{2}$ 1 $\sqrt{1}$ H_R $(j\omega)$ = $\frac{r}{\sqrt{2\pi}}$ *r*^{*-*} (ωRC ω ω = + , i.e., $V_0 < V_s$ and

(6.1-7)
$$
\left|H_{R_0}(j\omega)\right| = \begin{cases} r^- & \omega \to 0 \\ r/\sqrt{2} & \omega = \omega_0 = 1/rRC \\ 0^+ & \omega \to \infty \end{cases}
$$

• Note that if $R_o \to \infty$, then $r \to 1$ and $H_{R_o}(j\omega) \approx H(j\omega)$. However, it is impossible to use $R_0 \to \infty$ since the cureent through R_0 will be very small, so is the output power.

6.2 Ideal Operational Amplifier (OPAmp)

Voltage Amplifier using transistor

If $R_i \to \infty$ and $R_o \approx 0$, then $v_L(t) = Av_s(t)$, not affected by R_s and R_L .

OPAmp

• Importent properties

$$
(6.2-2) \t R_i \rightarrow \infty, \t R_o \approx 0, \t A \rightarrow \infty, ,
$$

$$
(6.2-3) \qquad v_o(t) = A \Delta v(t)
$$

It implies $\Delta v(t) \approx 0$ and $i_A(t) \rightarrow 0$.

In general, we say that the node $\circled{1}$ is a virtual ground.

Equivalent circuit

(6.2-4)
$$
i(t) = \frac{v_s(t)}{R_s} = -\frac{v_L(t)}{R_f} \Rightarrow v_L(t) = -\frac{R_f}{R_s}v_s(t)
$$

That means the gain $-\frac{R_f}{R}$ *s R* $-\frac{r}{R}$ is independent to the payload R_L .

• Inverting amplifier

The voltage gain is negative and called the inverting amplifier. Example: If $R_L = 1 \text{ k}\Omega$, what is $i_L(t)$?

Non-inverting amplifier

(6.2-7) () () () 0 1 1 =−+ *f ^s R v t v t R v t* () ¹ () *f o s R v t v t R* ⁼ ⁺

$$
(6.2-8) \t Av = \frac{v_o(t)}{v_s(t)} = 1 + \frac{R_f}{R_s} \ge 1
$$

The voltage gain is positive and called the non-inverting amplifier. It can be used as a buffer, $v_o(t) = v_s(t)$, by setting $R_f=0$ or $R_s=\infty$.

Example: Determine $v_o(t)$.

• Addition

$$
(6.2-9) \qquad \frac{v_1(t) - v_{s1}(t)}{R_{s1}} + \frac{v_1(t) - v_{s2}(t)}{R_{s2}} + \frac{v_1(t) - v_{s3}(t)}{R_{s3}} + \frac{v_1(t) - v_o(t)}{R_f} = 0
$$

$$
(6.2-10) \t v_o(t) = -\left(\frac{R_f}{R_{s1}}v_{s1}(t) + \frac{R_f}{R_{s2}}v_{s2}(t) + \frac{R_f}{R_{s3}}v_{s3}(t)\right)
$$

It is an inverting addition.

• Subtraction

$$
(6.2-11) \qquad \frac{v_1(t)-v_{s1}(t)}{R_{s1}}+\frac{v_1(t)-v_o(t)}{R_f}=0\,,\quad v_1(t)=\frac{R_{s3}}{R_{s2}+R_{s3}}v_{s2}(t)
$$

$$
(6.2-12) \t v_o(t) = \frac{R_{s3}(R_f + R_{s1})}{R_{s1}(R_{s3} + R_{s2})} v_{s2}(t) - \frac{R_f}{R_{s1}} v_{s1}(t)
$$

• Integrator

(6.2-13)
$$
i_c(t) = C \frac{dv_c(t)}{dt} = C \frac{d}{dt} (v_1(t) - v_0(t))
$$

$$
(6.2-14) \qquad \frac{v_1(t)-v_s(t)}{R_s}+i_c(t)=\frac{v_1(t)-v_s(t)}{R_s}+C\frac{d}{dt}(v_1(t)-v_o(t))=0
$$

Since $v_1(t)=0$, we have

$$
(6.2-15) \qquad \frac{dv_o(t)}{dt} = -\frac{v_s(t)}{R_sC}
$$

$$
(6.2-16) \t vo(t) = -\frac{1}{R_s C} \int_0^t v_s(\tau) d\tau + v_o(0)
$$

It is an inverting integrator.

6.3 RLC circuits with OPAmps

Example-1

• Example-2

• Example-3

Example-4

• Example-5

• Example-6

• Example-7

• Example-8

