Chap 6 Linear Circuits with Operational Amplifier

6.1 Fundamental concepts of filters

• First-order low pass-filter implemented by an RC cirduit:

• Assume the voltage source is

(6.1-1)
$$v_s(t) = V_s \cos(\omega t) \text{ or } \hat{v}_s(s) = V_s \frac{s}{s^2 + \omega^2}.$$

Then, the output voltage is

(6.1-2)
$$\hat{v}_{o}(s) = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} \hat{v}_{s}(s) = \frac{1}{\underbrace{1 + sRC}} \cdot \hat{v}_{s}(s) = H(s) \frac{V_{s}s}{s^{2} + \omega^{2}}$$

• As $t \to \infty$, let $s = j\omega$ and obtain $H(j\omega) = \frac{1}{1 + j\omega RC}$, or expressed as

(6.1-3)
$$H(j\omega) = |H(j\omega)|e^{j\angle H(j\omega)} = \frac{1}{\sqrt{1 + (\omega RC)^2}}e^{j\theta}$$

where $|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$ and $\theta = \angle H(j\omega) = -tan^{-1}(\omega RC)$.

• If $v_s(t) = V_s \cos(\omega t)$ then the output voltage is

(6.1-4)
$$v_o(t) = |H(j\omega)| V_s \cos(\omega t + \theta) = V_0 \cos(\omega t + \theta)$$

where $V_0 = |H(j\omega)|V_s$.

It is easy to check that $|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}} < 1$, i.e., $V_0 < V_s$ and (6.1-5) $|H(j\omega)| = \begin{cases} 1^- & \omega \to 0\\ 1/\sqrt{2} & \omega = \omega_0 = 1/RC\\ 0^+ & \omega \to \infty \end{cases}$

The output voltage will be decresed while ω is incresed.

To achieve the output voltage, we often connect a receiver with equivalent resistance R_o , shown as below:

Then, the output voltage is changed as $\hat{v}_o(s) = H_{R_o}(s)\hat{v}_s(s)$ or

(6.1-6)
$$\hat{v}_{o}(s) = \frac{\frac{1}{sC} / / R_{o}}{R + \frac{1}{sC} / / R_{o}} \hat{v}_{s}(s) = \frac{r}{\underbrace{r(sRC) + 1}_{H_{R_{o}}}} \cdot \frac{V_{s} s}{s^{2} + \omega^{2}}$$

where $r = \frac{R_o}{R + R_o} < 1$.

It is easy to check that $|H_{R_o}(j\omega)| = \frac{r}{\sqrt{1 + r^2(\omega RC)^2}} < 1$, i.e., $V_0 < V_s$ and

(6.1-7)
$$\left| H_{R_0}(j\omega) \right| = \begin{cases} r^{-} & \omega \to 0 \\ r / \sqrt{2} & \omega = \omega_0 = 1 / rRC \\ 0^{+} & \omega \to \infty \end{cases}$$

• Note that if $R_o \to \infty$, then $r \to 1$ and $H_{R_o}(j\omega) \approx H(j\omega)$. However, it is impossible to use $R_o \to \infty$ since the cureent through R_o will be very small, so is the output power.

6.2 Ideal Operational Amplifier (OPAmp)

• Voltage Amplifier using transistor

If $R_i \to \infty$ and $R_o \approx 0$, then $v_L(t) = Av_s(t)$, not affected by R_s and R_L .

OPAmp

• Importent properties

$$(6.2-2) \qquad R_i \to \infty, \quad R_o \approx 0, \quad , \quad A \to \infty, \quad ,$$

 $(6.2-3) v_o(t) = A \Delta v(t)$

It implies $\Delta v(t) \approx 0$ and $i_{\Delta}(t) \rightarrow 0$.

In general, we say that the node (1) is a virtual ground.

• Equivalent circuit

(6.2-4)
$$i(t) = \frac{v_s(t)}{R_s} = -\frac{v_L(t)}{R_f} \Longrightarrow v_L(t) = -\frac{R_f}{R_s} v_s(t)$$

That means the gain $-\frac{R_f}{R_s}$ is independent to the payload R_L .

• Inverting amplifier

The voltage gain is negative and called the inverting amplifier. Example: If $R_L = 1 \text{ k}\Omega$, what is $i_L(t)$?

Non-inverting amplifier

•

(6.2-7)
$$\frac{v_1(t)}{R_s} + \frac{v_1(t) - v_o(t)}{R_f} = 0 \implies v_o(t) = \left(1 + \frac{R_f}{R_s}\right) v_s(t)$$

(6.2-8)
$$A_{v} = \frac{v_{o}(t)}{v_{s}(t)} = 1 + \frac{R_{f}}{R_{s}} \ge 1$$

The voltage gain is positive and called the non-inverting amplifier. It can be used as a buffer, $v_o(t) = v_s(t)$, by setting $R_f=0$ or $R_s=\infty$.

Example: Determine $v_o(t)$.

• Addition

(6.2-10)
$$v_o(t) = -\left(\frac{R_f}{R_{s1}}v_{s1}(t) + \frac{R_f}{R_{s2}}v_{s2}(t) + \frac{R_f}{R_{s3}}v_{s3}(t)\right)$$

It is an inverting addition.

Subtraction

(6.2-11)
$$\frac{v_1(t) - v_{s1}(t)}{R_{s1}} + \frac{v_1(t) - v_o(t)}{R_f} = 0, \quad v_1(t) = \frac{R_{s3}}{R_{s2} + R_{s3}} v_{s2}(t)$$

(6.2-12)
$$v_o(t) = \frac{R_{s3}(R_f + R_{s1})}{R_{s1}(R_{s3} + R_{s2})} v_{s2}(t) - \frac{R_f}{R_{s1}} v_{s1}(t)$$

• Integrator

(6.2-13)
$$i_{c}(t) = C \frac{dv_{c}(t)}{dt} = C \frac{d}{dt} (v_{1}(t) - v_{o}(t))$$

(6.2-14)
$$\frac{v_1(t) - v_s(t)}{R_s} + i_C(t) = \frac{v_1(t) - v_s(t)}{R_s} + C\frac{d}{dt}(v_1(t) - v_o(t)) = 0$$

Since $v_1(t)=0$, we have

(6.2-15)
$$\frac{dv_o(t)}{dt} = -\frac{v_s(t)}{R_s C}$$

(6.2-16)
$$v_o(t) = -\frac{1}{R_s C} \int_0^t v_s(\tau) d\tau + v_o(0)$$

It is an inverting integrator.

6.3 RLC circuits with OPAmps

• Example-1

• Example-2

• Example-3

• Example-4

• Example-5

• Example-6

• Example-7

• Example-8

